サプライチェーンの「DX」という言葉がメディアで日々取り上げられる一方で、「どこから 手をつけて良いのかわからない」「どんな体制が必要なのか」といった 声が多く聞かれます。遅れていると指摘される日本の DX をどう進めて いくべきなのでしょうか。現場起点で AI 活用に取り組み、全社的に AI 活用を推進しているヤマハ発動機株式会社の大西 圭一氏とダイハツ 工業株式会社の太古 無限氏に、DX を推進するプロジェクトをどう立ち上げ、どう広げていったのかを聞きました。
流通・鉄道・通信業界のお客様を担当し、技術ではMLOpsテクノロジーを中心に扱っているデータサイエンティストの濱上です …
はじめに DataRobotで主に政府公共領域やヘルスケア業界のお客様を担当しているデータサイエンティストの若月です。 …
ターゲットマーケティングなどで近年注目されているアップリフトモデリングは、介入効果を個別またはサブグループごとに予測することで介入すべき対象を明らかにする手法です。本記事では、アップリフトモデリングのメリットや適用範囲・注意点を説明し、DataRobotを用いたシンプルな操作によるモデル構築方法をご紹介します。
片方のクラスが極端に少ない、あるいは大半の値がゼロといったゼロ過剰などのバランスの悪いデータを不均衡データといいます。このようなデータの偏りは、予測結果の偏りにつながるなどという問題があります。本記事では、不均衡データへの代表的な対処法を紹介し、DataRobotにおいてこの問題をどう扱うかについて解説します。
需要予測を行う際、特に消費財を扱うような小売業では、数万といった多くのSKUの予測モデルを作成する必要があります。モデル数を増やすと精度向上が期待できますが、管理が煩雑というトレードオフがあります。本ブログでは、多数の商品の需要予測を効率よく行うためのクラスタリング関連のテクニックを紹介します。
機械学習モデルの精度向上とコスト削減は、どちらでも重要です。もちろん妥協点が必要ですが、最適解を見つけるのは最大の価値を生み出せます。本ブログではDataRobotのお客さんの課題を解決するため、kaggleで鍛えたスキルを活用して、高精度かつ低コストを実現できた事例を紹介します。
「データのパーティション」には多くの種類とそれぞれに特性があります。本稿では適切なパーティションを選択するために、各パーティションの手法ごとに利用シーンやメリット・デメリットを考察します。
モデリングを行う際に結果に大きく影響を与えるのが「データのパーティション」です。パーティションは特徴量エンジニアリングなどと異なり、表面上に見えにくいため軽視されがちですが、適切なパーティションを選ばないことにより運用で痛手を負うケースがあります。