サプライチェーンの「DX」という言葉がメディアで日々取り上げられる一方で、「どこから 手をつけて良いのかわからない」「どんな体制が必要なのか」といった 声が多く聞かれます。遅れていると指摘される日本の DX をどう進めて いくべきなのでしょうか。現場起点で AI 活用に取り組み、全社的に AI 活用を推進しているヤマハ発動機株式会社の大西 圭一氏とダイハツ 工業株式会社の太古 無限氏に、DX を推進するプロジェクトをどう立ち上げ、どう広げていったのかを聞きました。
オフセット項を利用することによって、ビジネスロジックや既存のドメイン知識をそのままモデルに組み込むことができます。少し高度なテクニックですが、オフセット項を身につけるとより機械学習の幅が広がります。
機械学習モデルをビジネスで活用するには、なぜその予測がなされたか等、高い解釈性・説明性が求めらます。本ブログでは最近のアップデートで可能になったShapley Valuesを応用したSHAPによる特徴量の影響度算出について解説します。
金融機関での不正出金のニュースが世を賑わしています。ほぼ毎日なんらかの不正が行われています。その被害額も凄まじく、2019年1年間のクレジットカードの不正利用額は273.8億円にも上ります。本ブログでは、様々な不正の種類に触れながら、実際に不正を防ぐための対策をどのようにAIで実現していくか紹介します。
DataRobot Pathfinderは、組織や企業で働くすべての人が、それぞれ独自のビジネスニーズに最も適した AI の活用方法を見つけることができる AI ユースケースの総合ライブラリです。14の業種で導入実績のある100以上の厳選されたAI導入のユースケースを紹介し、AI を使った解決手法を説明しています。
AI(人工知能)技術が注目をあつめる昨今、ディープラーニング(深層学習)という単語を耳にする機会も増えてきました。一方で、従来の機械学習との違いや詳細な仕組みはわからないという方も多いのではないでしょうか。 そこで本稿ではディープラーニングとAI、マシンラーニングとの違い、kaggleコンペ優勝者が使ったモデルかつ産業応用事例に基づいて、どちらの領域でディープラーニングが優れているか、優れてないかを紹介します。
近年注目が集まるReal World Data(RWD)に機械学習を適切に用いることで素晴らしい知見が得られた事例が報告されています。本稿では、医療関係者や創薬研究者がRWD分析で成功するためのヒントを得ていただくために、機械学習を使用したRWDの分析で気を付けるべきポイントを紹介します。
AI/機械学習を使って要因分析を行うとき、事前に要因の候補に関する知識を上手に整理して仮説を立てておくと、適切な特徴量からモデルを構築できて分析の成功確率が高まります。そして、QCサークル活動など、産業界で品質管理活動に携わる人達が利用してきたドメイン知識整理の手法はデータサイエンティストにとっても非常に有効です。
要因分析を対象に、従来型の統計解析と機械学習を適宜使い分けながらより再現性の高い分析結果を得るための方法を考察します。また、データのレコード数が少ない「スモールデータ」や、特徴量の数がレコード数より大きい「横長データ」からでもロバストな要因分析を行うための機械学習応用アプローチを考察・提案します。