サプライチェーンの「DX」という言葉がメディアで日々取り上げられる一方で、「どこから 手をつけて良いのかわからない」「どんな体制が必要なのか」といった 声が多く聞かれます。遅れていると指摘される日本の DX をどう進めて いくべきなのでしょうか。現場起点で AI 活用に取り組み、全社的に AI 活用を推進しているヤマハ発動機株式会社の大西 圭一氏とダイハツ 工業株式会社の太古 無限氏に、DX を推進するプロジェクトをどう立ち上げ、どう広げていったのかを聞きました。
DataRobot に取り込む言語に関係なく、同様の優れた結果を常に期待できます。AI Cloud プラットフォーム向け次世代 Text AI についてはこちらをご覧ください。
Debanjan Saha は DataRobot の President 兼 Chief Operating Officer(COO)として就任しました。COO として AI Cloud プラットフォームの拡張し、世界中の組織が AI によって革新的な価値をより早く享受できるように尽力します。
お客様の中には、自社データを活用して自社のビジネス課題を解決するだけでなく、社外のクライアントのビジネス課題を解決したいというご要望が増えてきております。本ブログでは、特定の業務課題に対して、予測サービスプロバイダーとして提供可能なパートナープログラムについてご紹介します。
本ブログは「2022年にAIで成功を勝ち取る10のキーポイント」と題して、AIの巨大なパワーを活用することで、企業がデータをどのように活用できるかを深く掘り下げていきます。2022年のビジネスにおけるデータ活用のヒントとなれば幸いです。
AI Cloud のリーディングカンパニーであるDataRobotも、AIの力でSDGsに貢献すべくAI for Goodなど取り組みを進めています。AIはどのようにSDGs、気候変動に貢献できるのでしょうか。気候変動対策における AI の役割として、その可能性をご紹介します。
スポーツチームが AI を活用するユースケース(活用方法)としては、「競技場の中」から、「競技場の外」、「ファン動向測定(Fanalytics)」まで、多岐にわたります。
企業が求める意思決定とは、簡単かつ柔軟でありながら透明性の高いものであると DataRobot は考えます。ディシジョンインテリジェンスフローを導入すると、複雑なルールを迅速かつ視覚的に作成し、予測の評価や意思決定プロセスの自動化を大規模に行うことができます。
DataRobot AI Cloud プラットフォームは、約 10 年にわたる先駆的な AI イノベーションの集大成であり、市場に投入するためのエンジニアリングに 150 万時間を費やし DataRobot にデプロイされた 100 万以上のアクティブなプロジェクトの成果に基づいて、プラットフォームを改善してきました。
AI に対する需要は非常に高く、AI ドリブン組織への道は避けられません。AI が積極的なペースで進展していく中で、機械学習を利用したソリューションは急速にニューノーマルになりつつあります。本ブログではリリース 7.2 で進化したDataRobot AI Cloud の新機能についてご紹介します。