- Artificial Intelligence
- Data
- Data Science
- Features
- Generative AI
- Machine Learning
-
Modeling
- Autopilot Mode
- Classification
- Confusion Matrix
- Cross-Validation
- Deep Learning Algorithms
- Machine Learning Model
- Machine Learning Model Accuracy
- Machine Learning Model Deployment
- Model Blueprint
- Model Fitting
- Model Interpretability
- Model Tuning
- Multiclass Classification
- Neural Network
- Open Source Model Infrastructure
- Overfitting
- Regression
- Training Sets, Validation Sets, and Holdout Sets
- Underfitting
- Predictions
- View global site search results
- A
- AI Engineer
- AI Observability
- AIOps
- Artificial Intelligence Wiki
- Automated Machine Learning
- Autopilot Mode
- B
- Big Data
- C
- Citizen Data Scientist
- Classification
- Cognitive Computing
- Confusion Matrix
- Cross-Validation
- D
- Data Collection
- Data Governance
- Data Insights
- Data Management
- Data Preparation
- Data Profiling
- Data Science
- Deep Learning Algorithms
- E
- Explainable AI
- F
- Feature Engineering
- Feature Impact
- Feature Selection
- Feature Variables
- G
- Generative AI
- L
- Large Language Model Operations (LLMOps)
- M
- Machine Learning
- Machine Learning Algorithms
- Machine Learning Life Cycle
- Machine Learning Model
- Machine Learning Model Accuracy
- Machine Learning Model Deployment
- Machine Learning Operations (MLOps)
- Model Blueprint
- Model Fitting
- Model Interpretability
- Model Monitoring
- Model Tuning
- Multiclass Classification
- N
- Natural Language Processing
- Neural Network
- O
- Open Source Model Infrastructure
- Overfitting
- P
- Prediction
- Prediction Explanations
- Predictive Maintenance
- Production Model Governance
- Production Model Lifecycle Management
- R
- Regression
- S
- Scoring Data
- Semi-Supervised Machine Learning
- Stacked Predictions
- Supervised Machine Learning
- T
- Target Leakage
- Target Variable
- Text Mining
- Training Sets, Validation Sets, and Holdout Sets
- U
- Underfitting
- Unsupervised Machine Learning
- W
- What is Artificial Intelligence (AI)?
- View global site search results
- Artificial Intelligence
- Data
- Data Science
- Features
- Generative AI
- Machine Learning
-
Modeling
- Autopilot Mode
- Classification
- Confusion Matrix
- Cross-Validation
- Deep Learning Algorithms
- Machine Learning Model
- Machine Learning Model Accuracy
- Machine Learning Model Deployment
- Model Blueprint
- Model Fitting
- Model Interpretability
- Model Tuning
- Multiclass Classification
- Neural Network
- Open Source Model Infrastructure
- Overfitting
- Regression
- Training Sets, Validation Sets, and Holdout Sets
- Underfitting
- Predictions
Machine Learning Model Accuracy
What does Machine Learning Model Accuracy Mean?
Machine learning model accuracy is the measurement used to determine which model is best at identifying relationships and patterns between variables in a dataset based on the input, or training, data. The better a model can generalize to ‘unseen’ data, the better predictions and insights it can produce, which in turn deliver more business value.
Why is Model Accuracy Important?
Companies use machine learning models to make practical business decisions, and more accurate model outcomes result in better decisions. The cost of errors can be huge, but optimizing model accuracy mitigates that cost. There is, of course, a point of diminishing returns when the value of developing a more accurate model won’t result in a corresponding profit increase, but often it is beneficial across the board. A false positive cancer diagnosis, for example, costs both the hospital and the patient. The benefits of improving model accuracy help avoid considerable time, money, and undue stress.
DataRobot + Model Accuracy
The DataRobot AI platform uses top open-source algorithms to enable its users to develop extremely accurate, highly interpretable models with the click of a button. It thoroughly tests the accuracy of its models with 5-fold cross-validation and provides insights to reduce the likelihood of factors such as target leakage which may inhibit model accuracy and therefore negatively impacting the decision-making process.