サプライチェーンの「DX」という言葉がメディアで日々取り上げられる一方で、「どこから 手をつけて良いのかわからない」「どんな体制が必要なのか」といった 声が多く聞かれます。遅れていると指摘される日本の DX をどう進めて いくべきなのでしょうか。現場起点で AI 活用に取り組み、全社的に AI 活用を推進しているヤマハ発動機株式会社の大西 圭一氏とダイハツ 工業株式会社の太古 無限氏に、DX を推進するプロジェクトをどう立ち上げ、どう広げていったのかを聞きました。
データサイエンス アソシエート
DataRobot データサイエンティストとして、小売・流通業界のお客さまの AI 活用/推進を支援。博士(工学)修了後、大手電機メーカーにて研究開発に従事。AIを用いた需要予測や材料の配合最適化シミュレーションに取り組んだ経験を有する。現在は、小売・流通業界を中心に複数のプロジェクトに従事し、AIによる継続的な価値創出を支援。
流通・鉄道・通信業界のお客様を担当し、技術ではMLOpsテクノロジーを中心に扱っているデータサイエンティストの濱上です …
- DataRobot MLOps監視エージェントによるAIモデルの運用管理 - はじめに 小売・流通業界のお客様を担当…
ターゲットマーケティングなどで近年注目されているアップリフトモデリングは、介入効果を個別またはサブグループごとに予測することで介入すべき対象を明らかにする手法です。本記事では、アップリフトモデリングのメリットや適用範囲・注意点を説明し、DataRobotを用いたシンプルな操作によるモデル構築方法をご紹介します。