DataRobot の AI サクセスの責任者をしております三島とデータサイエンティストの鎌田です。三島は、現在は DataRobot で AI サクセスの責任者をしておりますが、DataRobot 入社前は15年以上、製造業のお客様を中心に ERP や SCM のシステム導入に携わり、特にアフターメンテナンスの領域では、多くのお客様の業務改善に従事して参りました。鎌田はデータサイエンティストとして大学などの研究機関から民間企業まで主にヘルスケア業界のお客様を支援しており、COVID-19 などの社会問題から民間企業の現場レベルの問題まで幅広い問題に日々立ち向かっています。この記事では、リアルな現場をみている2人が、アフターメンテナンス業務プロセスにおける AI 活用について解説をしていきます。
読者の中には、既に様々なベンダーやコンサルファームが開催している AI 関連・需要予測のウェビナーに参加されたり、関連の記事を読まれている方もいらっしゃるかと思います。本記事は、一般的な AI 関連・需要予測の話ではなく、サプライチェーン業界の中でも、組立製造業のお客様のアフターメンテナンスの領域に特化しています。
一方、リソースが足りないアフターメンテナンス部門であるからこそ、今まで人が時間を掛けていた作業を AI に代替させることによって業務効率化の恩恵を大きく受けられるポテンシャルがあります。また、リソースが投下されにくいからこそ、高齢化に伴うリタイアが進む熟練者のナレッジやスキルの一部を伝承する必要がありますが、AI の導入によって効果的なナレッジ共有・標準化を行うことが可能となります。さらに、製品の稼働データをうまく活用することにより、新たなメンテナンスサポートサービスの開発に繋がるインサイトを得ることができ、今まで以上のタイムリーさで収益向上・コスト削減に繋げられるポテンシャルがあります。
また、アフターメンテナンス業務プロセスには AI で解決可能なテーマ(課題)が多く存在しているのも、私達が本ブログ記事を書くに至ったもう一つの理由です。例えば、「保守部品の需要予測」という課題を考えてみると、売上の観点では1つの需要予測ですが、在庫管理、発注業務やメンテナンスライフサイクルの細かい業務プロセスの単位で多くの派生テーマが考えられます。需要予測以外にも、例えば修理受付のコール対応プロセスでは、サービスエンジニアの現地支援が必要かどうかを予測したり、交換が必要な部品はなにかを予測して一発解決率を向上させるなど、自社のサポートの品質向上と差別化を実現できる多くのテーマ(課題)があります。
これらの AI 活用課題が業務実装されて業務プロセスが変わると(例:AI が想定した故障原因に関する情報をお客様にアプリなどで共有してお客様自身で問診を行っていただく)、社内でより効率的なオペレーションを行えるようになり、メンテナンスサービスによる売り上げの増大やコスト抑制が実現できます。また、故障予知や故障要因分析などの課題は、製造現場でも展開可能な事例になるので、バリューチェーン全体での展開も視野に入れられます(図2)。
AI 活用に向けた第一歩
前章では大きなビジョンを示しましたが、では具体的にアフターメンテナンス部門で AI を効果的に利活用するためには AI 導入をどのように進めれば良いでしょうか?本章ではアフターメンテナンス部門で AI を利用してビジネス成果を実現するためのロードマップ(下図3)と、最初のステップ「Initial Success」での重要ポイントをご紹介します。
Step 1:自部門の KPI に直結するテーマでまず成功する(Initial Success)。アフターメンテナンス部門で AI 活用の実績を作り、社内での注目も獲得する。
Step 2:事業部長を巻き込み、他部門と連携したバリューチェーンでの効果創出を実現する。(ここでは、他部門で抱えている課題をアフターメンテナンス部門から発信・改善へ貢献する「Give and Give and Take」の意識が重要)
Point 1:アフターメンテナンス部門の KPI である、「一発解決率、即納率、部品(または代品)在庫回転率・在庫月数」などを因数分解して、対象カテゴリーを細分化した上で AI を適用する。特に、検証や結果報告に複雑な手間のかからないカテゴリーが存在するので、まずはそこから着手する。(なお、DataRobot では、AI プロジェクトのテーマを精査するご支援も提供しています)
Point 2:既存の SCM システムや計画システムが不得意としている領域からアプローチする。既存システムをリプレースするのではなく、既存システムが苦手としているところを補完すれば関係者全員が Win-Win になり、かつシステムリプレースと比較して少ないステークホルダー、少ないコストで課題解決できるため承認も得られやすくなる。(DataRobot は接続先システムを選ばないため、既存システムとの連携を簡単に行うことができます)
Point 3:アフターメンテナンス業務はドメイン知識が強く求められる領域であるからこそ、外注に任せず、内製化を前提として分析を進めることが重要。内製を一度実施すると、次のテーマでの内製のハードルが大きく下がり、アフターメンテナンス部門内でのデータ活用が順調に広がっていく。(DataRobot はコーディング不要で精度の高い AI モデルを作成できるため、専任のデータサイエンティストがいない部門でも内製化を加速させることができます)
Point 1:高額な初期在庫配備品/低回転品は「2,3個の在庫を持つ/持たない」という判断になり、検証が非常に楽である。
Point 2:需要頻度や需要数量が多い部品や製品は、既存の SCM システムを用いてすでに需要予測が行われているケースが多い一方で、高額な初期在庫配備品/低回転品は、熟練者の属人的なスキルに依存しているケースが多いため、AI 活用による追加のビジネスインパクトが大きい。(高額な初期在庫配備品/低回転品の多くは、故障すると本体自体が稼働できなくなるコア部品の場合が多く、かつ非常に値段が高く在庫金額にも影響を与えるため、改善された場合のビジネスインパクトが大きいカテゴリになります)
Point 3:次の章で解説するような分析を DataRobot で行えるので、内製化が十分に可能な領域であると考えられる。
機械学習では、一度モデルを構築したらそれで終わりということはなく、作成したモデルをモニタリングし、適宜モデルの再学習を行う必要があります。そのため、ビジネス環境が代わり、過去のモデルが機能しなくなると予測精度が低下しますが、そのタイミングを逃さず検知しモデルを再学習するために、予測精度を監視・管理する体制も併せて構築しなければいけません。特に長期間のデータを使用する場合、ビジネス環境の変化の影響が出やすいので、AI モデルの監視・管理体制がいかに機能するかが AI モデルの有用性に大きく関わってきます。
アフターメンテナンス業務プロセスに問題・課題をお持ちの方、アフターメンテナンス部門でデータドリブンな業務改善を推進したいと思われる方は、是非お気軽に弊社までお問い合わせください。この分野の知識・経験豊富なデータサイエンティストや AI サクセスの専門家が、お客様の業務課題を整理し、精緻化するところからご相談に乗らせていただきます。